The Applications of Artificial Neural Networks in the Identification of Quantitative Structure-Activity Relationships for Chemotherapeutic Drug Carcinogenicity

نویسندگان

  • Alexander C. Priest
  • Alexander James Williamson
  • Hugh M. Cartwright
چکیده

We investigate which of two Artificial Intelligence techniques is superior at making predictions about complex carcinogen systems. Artificial Neural Networks are shown to provide good predictions of carcinogen toxicology bands for drugs which are themselves used to treat cancerous cells, by using a novel system of molecular descriptors derived from the molecules’ mass spectrometry intensities, reduced in dimensionality by Principal Component Analysis, to form a series of orthogonal descriptors which retain 95% of the variance of the original data. The creation of molecular descriptors from PCA-resolved mass spectrometry data is shown to be superior to the use of Self-Organising Maps, the selection of a series of modal fragments, or the use of every peak (within the confines of the precepts of Artificial Intelligence). A new system of backpropagation which increases network efficacy in this case is also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

Identification of Structural Defects Using Computer Algorithms

One of the numerous methods recently employed to study the health of structures is the identification of anomaly in data obtained for the condition of the structure, e.g. the frequencies for the structural modes, stress, strain, displacement, speed,  and acceleration) which are obtained and stored by various sensors. The methods of identification applied for anomalies attempt to discover and re...

متن کامل

Application of artificial neural networks for the prediction of carbonate lithofacies, based on well log data, Sarvak Formation, Marun oil field, SW Iran

Lithofacies identification can provide qualitative information about rocks. It can also explain rock textures which are importantcomponents for hydrocarbon reservoir description Sarvak Formation is an important reservoir which is being studied in the Marun oilfield, in the Dezful embayment (Zagros basin). This study establishes quantitative relationships between digital well logs data androutin...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Using the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting

The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models.  Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010